	001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
	import heapq
import copy
==
1. 定义问题的初始状态和目标状态
==
0 代表空格
INITIAL_STATE = [
 [5, 1, 2, 4],
 [9, 6, 3, 8],
[bookmark: _GoBack] [13, 15, 10, 11],
 [14, 0, 7, 12]
]
GOAL_STATE = [
 [1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12],
 [13, 14, 15, 0]
]
==
2. 核心辅助类与函数
==
class Node:
 def __init__(self, state, parent=None, move=None, g=0, h=0):
 self.state = state # 当前棋盘状态
 self.parent = parent # 父节点 (为了回溯路径)
 self.move = move # 也就是怎么走到这一步的 (比如 "Up")
 self.g = g # g(n): 已经走的步数 (代价)
 self.h = h # h(n): 预计还要走的步数 (启发值)
 self.f = g + h # f(n) = g(n) + h(n): 总评分
 # 定义比较规则，为了让优先队列知道谁的 f 更小
 def __lt__(self, other):
 return self.f < other.f
def get_pos(state, value):
 """找到某个数字(value)在棋盘中的坐标 (行, 列)"""
 for r in range(4):
 for c in range(4):
 if state[r][c] == value:
 return r, c
 return None
def manhattan_distance(state, goal):
 """
 [关键步骤] 启发函数 h(n)：计算曼哈顿距离
 计算所有数字当前位置与目标位置的横向+纵向距离之和
 """
 distance = 0
 for r in range(4):
 for c in range(4):
 value = state[r][c]
 if value != 0: # 空格不计算距离
 target_r, target_c = get_pos(goal, value)
 # abs是绝对值，计算横向和纵向差距
 distance += abs(r - target_r) + abs(c - target_c)
 return distance
def get_neighbors(node):
 """生成当前状态的所有可能的下一步状态"""
 neighbors = []
 state = node.state
 # 找到0(空格)的位置
 row, col = get_pos(state, 0)

 # 定义四个移动方向: 上, 下, 左, 右 (行偏移, 列偏移, 动作名)
 moves = [(-1, 0, "Up"), (1, 0, "Down"), (0, -1, "Left"), (0, 1, "Right")]
 for dr, dc, move_name in moves:
 new_row, new_col = row + dr, col + dc

 # 检查是否越界
 if 0 <= new_row < 4 and 0 <= new_col < 4:
 # 复制当前状态用于修改
 new_state = [list(row) for row in state] # 深拷贝
 # 交换空格和相邻数字的位置
 new_state[row][col], new_state[new_row][new_col] = \
 new_state[new_row][new_col], new_state[row][col]

 # 将列表转回元组以便存入集合去重 (列表不可哈希)
 neighbors.append((tuple(tuple(row) for row in new_state), move_name))

 return neighbors
==
3. A* 算法主逻辑
==
def solve_puzzle(start, goal):
 # 将输入转换为元组格式
 start_tuple = tuple(tuple(row) for row in start)
 goal_tuple = tuple(tuple(row) for row in goal)
 # open_list: 优先队列，自动把 f 值最小的排在前面
 open_list = []

 # 初始节点的 h 值
 h_start = manhattan_distance(start_tuple, goal_tuple)
 start_node = Node(start_tuple, None, None, 0, h_start)

 heapq.heappush(open_list, start_node)

 # closed_set: 记录走过的状态，避免死循环和重复计算
 closed_set = set()
 print("正在思考中，请稍候...")
 while open_list:
 # 1. 取出 f 值最小的节点
 current_node = heapq.heappop(open_list)

 # 2. 检查是否到达目标
 if current_node.state == goal_tuple:
 print("找到解了！")
 return current_node
 # 3. 加入已访问集合
 closed_set.add(current_node.state)
 # 4. 扩展邻居节点
 for state_data, move_name in get_neighbors(current_node):
 if state_data in closed_set:
 continue # 如果走过这个状态，就跳过
 # g(n): 新的一步，代价+1
 new_g = current_node.g + 1
 # h(n): 计算新的曼哈顿距离
 new_h = manhattan_distance(state_data, goal_tuple)

 new_node = Node(state_data, current_node, move_name, new_g, new_h)

 # 加入优先队列
 heapq.heappush(open_list, new_node)
 return None # 无解
==
4. 打印结果路径
==
def print_solution(node):
 path = []
 while node.parent:
 path.append(node)
 node = node.parent
 path.reverse() # 因为是从终点回溯的，所以要反转
 print(f"\n一共需要 {len(path)} 步:\n")

 # 打印初始状态
 print("Start:")
 for row in INITIAL_STATE:
 print(row)
 print("-" * 20)
 # 打印每一步
 for i, step in enumerate(path):
 print(f"Step {i+1}: Move {step.move}")
 for row in step.state:
 print(list(row))
 print(f" (g={step.g}, h={step.h}, f={step.f})")
 print("-" * 20)
if __name__ == "__main__":
 result_node = solve_puzzle(INITIAL_STATE, GOAL_STATE)
 if result_node:
 print_solution(result_node)
 else:
 print("未找到解。")

