
001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

import heapq

import copy

==

1. 定义问题的初始状态和目标状态

==

0 代表空格

INITIAL_STATE = [

[5, 1, 2, 4],

[9, 6, 3, 8],

[13, 15, 10, 11],

[14, 0, 7, 12]

]

GOAL_STATE = [

[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12],

[13, 14, 15, 0]

]

==

2. 核心辅助类与函数

==

class Node:

def __init__(self, state, parent=None, move=None, g=0, h=0):

self.state = state # 当前棋盘状态

self.parent = parent # 父节点 (为了回溯路径)

self.move = move # 也就是怎么走到这一步的 (比如 "Up")

self.g = g # g(n): 已经走的步数 (代价)

self.h = h # h(n): 预计还要走的步数 (启发值)

self.f = g + h # f(n) = g(n) + h(n): 总评分

定义比较规则，为了让优先队列知道谁的 f 更小

def __lt__(self, other):

return self.f < other.f

def get_pos(state, value):

"""找到某个数字(value)在棋盘中的坐标 (行, 列)"""

for r in range(4):

for c in range(4):

if state[r][c] == value:

return r, c

return None

def manhattan_distance(state, goal):

"""

[关键步骤] 启发函数 h(n)：计算曼哈顿距离

计算所有数字当前位置与目标位置的横向+纵向距离之和

"""

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

distance = 0

for r in range(4):

for c in range(4):

value = state[r][c]

if value != 0: # 空格不计算距离

target_r, target_c = get_pos(goal, value)

abs是绝对值，计算横向和纵向差距

distance += abs(r - target_r) + abs(c - target_c)

return distance

def get_neighbors(node):

"""生成当前状态的所有可能的下一步状态"""

neighbors = []

state = node.state

找到 0(空格)的位置

row, col = get_pos(state, 0)

定义四个移动方向: 上, 下, 左, 右 (行偏移, 列偏移, 动作名)

moves = [(-1, 0, "Up"), (1, 0, "Down"), (0, -1, "Left"), (0, 1, "Right")]

for dr, dc, move_name in moves:

new_row, new_col = row + dr, col + dc

检查是否越界

if 0 <= new_row < 4 and 0 <= new_col < 4:

复制当前状态用于修改

new_state = [list(row) for row in state] # 深拷贝

交换空格和相邻数字的位置

new_state[row][col], new_state[new_row][new_col] = \

new_state[new_row][new_col], new_state[row][col]

将列表转回元组以便存入集合去重 (列表不可哈希)

neighbors.append((tuple(tuple(row) for row in new_state), move_name))

return neighbors

==

3. A* 算法主逻辑

==

def solve_puzzle(start, goal):

将输入转换为元组格式

start_tuple = tuple(tuple(row) for row in start)

goal_tuple = tuple(tuple(row) for row in goal)

open_list: 优先队列，自动把 f 值最小的排在前面

open_list = []

初始节点的 h 值

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

h_start = manhattan_distance(start_tuple, goal_tuple)

start_node = Node(start_tuple, None, None, 0, h_start)

heapq.heappush(open_list, start_node)

closed_set: 记录走过的状态，避免死循环和重复计算

closed_set = set()

print("正在思考中，请稍候...")

while open_list:

1. 取出 f 值最小的节点

current_node = heapq.heappop(open_list)

2. 检查是否到达目标

if current_node.state == goal_tuple:

print("找到解了！")

return current_node

3. 加入已访问集合

closed_set.add(current_node.state)

4. 扩展邻居节点

for state_data, move_name in get_neighbors(current_node):

if state_data in closed_set:

continue # 如果走过这个状态，就跳过

g(n): 新的一步，代价+1

new_g = current_node.g + 1

h(n): 计算新的曼哈顿距离

new_h = manhattan_distance(state_data, goal_tuple)

new_node = Node(state_data, current_node, move_name, new_g, new_h)

加入优先队列

heapq.heappush(open_list, new_node)

return None # 无解

==

4. 打印结果路径

==

def print_solution(node):

path = []

while node.parent:

path.append(node)

node = node.parent

path.reverse() # 因为是从终点回溯的，所以要反转

print(f"\n一共需要 {len(path)} 步:\n")

打印初始状态

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

print("Start:")

for row in INITIAL_STATE:

print(row)

print("-" * 20)

打印每一步

for i, step in enumerate(path):

print(f"Step {i+1}: Move {step.move}")

for row in step.state:

print(list(row))

print(f" (g={step.g}, h={step.h}, f={step.f})")

print("-" * 20)

if __name__ == "__main__":

result_node = solve_puzzle(INITIAL_STATE, GOAL_STATE)

if result_node:

print_solution(result_node)

else:

print("未找到解。")

