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import heapq

import copy

# ==========================================

# 1. 定义问题的初始状态和目标状态

# ==========================================

# 0 代表空格

INITIAL_STATE = [

[5, 1, 2, 4],

[9, 6, 3, 8],

[13, 15, 10, 11],

[14, 0, 7, 12]

]

GOAL_STATE = [

[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12],

[13, 14, 15, 0]

]

# ==========================================

# 2. 核心辅助类与函数

# ==========================================

class Node:

def __init__(self, state, parent=None, move=None, g=0, h=0):

self.state = state # 当前棋盘状态

self.parent = parent # 父节点 (为了回溯路径)

self.move = move # 也就是怎么走到这一步的 (比如 "Up")

self.g = g # g(n): 已经走的步数 (代价)

self.h = h # h(n): 预计还要走的步数 (启发值)

self.f = g + h # f(n) = g(n) + h(n): 总评分

# 定义比较规则，为了让优先队列知道谁的 f 更小

def __lt__(self, other):

return self.f < other.f

def get_pos(state, value):

"""找到某个数字(value)在棋盘中的坐标 (行, 列)"""

for r in range(4):

for c in range(4):

if state[r][c] == value:

return r, c

return None

def manhattan_distance(state, goal):

"""

[关键步骤] 启发函数 h(n)：计算曼哈顿距离

计算所有数字当前位置与目标位置的横向+纵向距离之和

"""
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distance = 0

for r in range(4):

for c in range(4):

value = state[r][c]

if value != 0: # 空格不计算距离

target_r, target_c = get_pos(goal, value)

# abs是绝对值，计算横向和纵向差距

distance += abs(r - target_r) + abs(c - target_c)

return distance

def get_neighbors(node):

"""生成当前状态的所有可能的下一步状态"""

neighbors = []

state = node.state

# 找到 0(空格)的位置

row, col = get_pos(state, 0)

# 定义四个移动方向: 上, 下, 左, 右 (行偏移, 列偏移, 动作名)

moves = [(-1, 0, "Up"), (1, 0, "Down"), (0, -1, "Left"), (0, 1, "Right")]

for dr, dc, move_name in moves:

new_row, new_col = row + dr, col + dc

# 检查是否越界

if 0 <= new_row < 4 and 0 <= new_col < 4:

# 复制当前状态用于修改

new_state = [list(row) for row in state] # 深拷贝

# 交换空格和相邻数字的位置

new_state[row][col], new_state[new_row][new_col] = \

new_state[new_row][new_col], new_state[row][col]

# 将列表转回元组以便存入集合去重 (列表不可哈希)

neighbors.append((tuple(tuple(row) for row in new_state), move_name))

return neighbors

# ==========================================

# 3. A* 算法主逻辑

# ==========================================

def solve_puzzle(start, goal):

# 将输入转换为元组格式

start_tuple = tuple(tuple(row) for row in start)

goal_tuple = tuple(tuple(row) for row in goal)

# open_list: 优先队列，自动把 f 值最小的排在前面

open_list = []

# 初始节点的 h 值
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h_start = manhattan_distance(start_tuple, goal_tuple)

start_node = Node(start_tuple, None, None, 0, h_start)

heapq.heappush(open_list, start_node)

# closed_set: 记录走过的状态，避免死循环和重复计算

closed_set = set()

print("正在思考中，请稍候...")

while open_list:

# 1. 取出 f 值最小的节点

current_node = heapq.heappop(open_list)

# 2. 检查是否到达目标

if current_node.state == goal_tuple:

print("找到解了！")

return current_node

# 3. 加入已访问集合

closed_set.add(current_node.state)

# 4. 扩展邻居节点

for state_data, move_name in get_neighbors(current_node):

if state_data in closed_set:

continue # 如果走过这个状态，就跳过

# g(n): 新的一步，代价+1

new_g = current_node.g + 1

# h(n): 计算新的曼哈顿距离

new_h = manhattan_distance(state_data, goal_tuple)

new_node = Node(state_data, current_node, move_name, new_g, new_h)

# 加入优先队列

heapq.heappush(open_list, new_node)

return None # 无解

# ==========================================

# 4. 打印结果路径

# ==========================================

def print_solution(node):

path = []

while node.parent:

path.append(node)

node = node.parent

path.reverse() # 因为是从终点回溯的，所以要反转

print(f"\n一共需要 {len(path)} 步:\n")

# 打印初始状态
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print("Start:")

for row in INITIAL_STATE:

print(row)

print("-" * 20)

# 打印每一步

for i, step in enumerate(path):

print(f"Step {i+1}: Move {step.move}")

for row in step.state:

print(list(row))

print(f" (g={step.g}, h={step.h}, f={step.f})")

print("-" * 20)

if __name__ == "__main__":

result_node = solve_puzzle(INITIAL_STATE, GOAL_STATE)

if result_node:

print_solution(result_node)

else:

print("未找到解。")


