import heapq

import copy

o T
INITIAL_STATE = [

[5, 1, 2, 4],
[9, 6, 3, 8],
[13, 15, 10, 11],
[14, o, 7, 12]

]
GOAL_STATE = [
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 1o, 11, 12],
[13, 14, 15, @]
]
==
2. OB S R
==
class Node:
def __init_ (self, state, parent=None, move=None, g=0, h=0):
self.state = state # AETHARIRS
self.parent = parent # SVis5 (N T HIPIEELE)
self.move = move # Wi EAERX—PH (i "up")
self.g =g # g(n): CEEMRLE (M)
self.h = h # h(n): HUHEZERPH (HRE)
self.f =g+ h # f(n) = g(n) + h(n): M35
B BRI, N 7R BAF AE ER) £ BN
def __1t_ (self, other):
return self.f < other.f
def get_pos(state, value):
" ESEAT (value) (B IO (17, 51)"n
for r in range(4):
for ¢ in range(4):
if state[r][c] == value:
return r, c
return None
def manhattan_distance(state, goal):

[REEDIR] JRABRE h(n): THE 2 IREEEE
TR BT A LB S B AR B AR+ B A

distance = 0
for r in range(4):
for c in range(4):
value = state[r][c]
if value != 0: # ZHEAIHIES
target_r, target_c = get_pos(goal, value)
abs JEANE, TR [AR ZE BE
distance += abs(r - target_r) + abs(c - target_c)
return distance
def get_neighbors(node):
" DR P AT BRI R RS
neighbors = []
state = node.state
I o (=) MALE

row, col = get_pos(state, 0)

BN REE T b, N, A, A (TR, SRS, aifESR)
moves = [(-1, ©, "Up"), (1, @, "Down"), (@, -1, "Left"), (@, 1, "Right")]
for dr, dc, move_name in moves:

new_row, new_col = row + dr, col + dc

AR
if @ <= new_row < 4 and 0 <= new_col < 4:
S AECRES I T1E
new_state = [list(row) for row in state] # VA%l
ST AR AR
new_state[row][col], new_state[new_row][new_col] = \

new_state[new_row][new_col], new_state[row][col]

FYIRFPITHUMEFNE S RE (FIRAATEA)

neighbors.append((tuple(tuple(row) for row in new_state), move_name))

return neighbors

def solve_puzzle(start, goal):
RN O e
start_tuple = tuple(tuple(row) for row in start)
goal_tuple = tuple(tuple(row) for row in goal)
open_list: R4aB\%, HEE £ (Hig/AIHRERTTH
open_list = []

WG R h fH

h_start = manhattan_distance(start_tuple, goal_tuple)

start_node = Node(start_tuple, None, None, 0, h_start)

heapq.heappush(open_list, start_node)

closed_set: WREMLMPRD, #AICIEIAME L HH
closed_set = set()
print("IEERE S, wHE...")
while open_list:
1. Bl f (/M A

current_node = heapq.heappop(open_list)

2. ket mEIE
if current_node.state == goal_tuple:
print("FREIM L ")
return current_node
3. MACUIHES
closed_set.add(current_node.state)
4. PIRAETA
for state_data, move_name in get_neighbors(current_node):
if state_data in closed_set:
continue # WIHEXARE, #ibkid
g(n): #m—=, Rh+
new_g = current_node.g + 1
h(n): THECHTI0 IS IEE R
new_h = manhattan_distance(state_data, goal_tuple)

new_node = Node(state_data, current_node, move_name, new_g, new_h)

AR SEBAF
heapq.heappush(open_list, new_node)
return None # JGfi#

def print_solution(node):
path = []
while node.parent:
path.append(node)
node = node.parent
path.reverse() # K& LRI, Fr DAE R %
print(f"\n —JLF# {len(path)} & :\n")

FTEIIRARES

print("Start:")
for row in INITIAL_STATE:
print(row)
print("-" * 20)
{TENRE—0
for i, step in enumerate(path):
print(f"Step {i+1}: Move {step.move}")
for row in step.state:
print(list(row))
print(f" (g={step.g}, h={step.h}, f={step.f})")
print("-" * 20)
if __name__ == "__main__":
result_node = solve_puzzle(INITIAL_STATE, GOAL_STATE)
if result_node:
print_solution(result_node)
else:

print (" AL ")

