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Abstract—Emotion recognition plays a crucial role in human-
computer interaction and affective computing, yet its effectiveness
is limited by the difficulty of integrating heterogeneous modalities
with fundamentally different structures, such as physiological
signals and visual data. In this paper, we propose CLMER,
a contrastive learning-based multi-modal cross-attention frame-
work designed to address the challenges of complex emotion
recognition. The framework introduces a serialization strategy
that converts pixel-level image data into time-series data, aligning
it with the temporal characteristics of physiological signals.
CLMER consists of three core components that work together
to enable effective multi-modal emotion recognition. The multi-
modal data preparation module preprocesses physiological and
visual data, ensuring consistency across modalities. Building on
this foundation, the contrastive learning-based feature extraction
module generates temporal representations that capture the
essential patterns embedded in the data through self-supervised
learning. Finally, the multi-modal fusion module employs cross-
modal attention to integrate features with improved modality
alignment. Experimental evaluations on two public datasets
DEAP, AMIGOS and a private dataset MAN-II demonstrate
that CLMER significantly outperforms unimodal and traditional
fusion approaches, achieving state-of-the-art performance in
emotion classification tasks. These findings highlight the frame-
work’s robust generalization, computational efficiency, and strong
performance in multi-modal emotion recognition, suggesting its
potential for real-world deployment. Our code is available at
https://github.com/anonymous/CLMER.

Index Terms—multi-modal emotion recognition, contrastive
learning, data serialization, cross-modal attention.

I. INTRODUCTION

UMAN emotion recognition serves as a foundational
task in human-computer interaction and affective brain-
computer interfaces, enabling the personalized and adaptive
user experiences and supporting applications in domains such
as healthcare and gaming [1]]. With the increasing demand
in these fields, various deep learning methods have been in-
troduced to provide more efficient and generalized support for
emotion recognition technologies [2]]. Emotion recognition can
be conducted using various types of materials, among which
are behavioral data such as facial expressions [3], body posture
[4], and vocal attributes [5] to train deep learning models.
However, subjects may intentionally or unintentionally distort
these cues by displaying misleading expressions or modulating
their voice [6]. A more reliable and less easily fabricated ap-
proach relies on physiological signals for emotion recognition.
For instance, data such as Electroencephalography (EEG) [7]],
Electrocardiography (ECG) [8]], and Galvanic Skin Response
(GSR) [9], collected via wearable devices, are commonly used
in deep learning-based classification models.
Given the complex and dynamic nature of emotions, uni-
modal approaches often suffer from inherent limitations and

narrow perspective on emotion, reducing model robustness
and generalization capacity. Recent studies have increasingly
focused on the exposition of multi-modal approaches, with var-
ious fusion methods demonstrating promising improvements in
training performance [|10]. Although multi-modal data provide
a more comprehensive representation of human emotional
states, prior research has largely concentrated on either internal
expression, such as EEG and ECG [11]], or external manifesta-
tions such as audio and images [|12]]. However, approaches that
combine both internal and external modalities, for instance,
physiological signals with visual data, remain limited and
have yet to employ state-of-the-art deep learning models [[1].
We formulate a strategy that fuses visual information with
EEG-centered physiological signals for multi-modal emotion
recognition based on the mechanism of cross-modal attention
and contrastive learning.

Heterogeneous modalities embody diverse qualities, struc-
tures, and representations, which pose significant challenges
for both learning modal-specific representations and capturing
alignment during the fusion process [13]. In terms of rep-
resentation learning, contrastive learning methods effectively
extract key feature information from each modality based on
task requirements, enabling further training and fusion of the
model. A contrastive learning-based fusion method, termed
CILP, jointly trains the image encoder and the text encoder
for prediction that shows outstanding performance while being
computationally efficient [14]. In addition, related studies have
shown that incorporating self-supervised learning methods
enhances training performance in the fusion of speech and
text modalities [[15]]. To better address the significant structural
differences between the physiological signal modality and the
visual modality, we adopted a deep fusion strategy that uses
contrastive learning methods to extract features and facilitate
the fusion process.

To effectively align data from both modalities for fusion,
we propose a serialization strategy to the visual data in the
temporal dimension. This design is motivated by the temporal
nature of physiological signals. Unlike traditional approaches
that use pixel-based images as input to deep learning models
[16], we extract facial information, such as 3D landmarks
[17] and Action Units (AU) [18] from images as visual
input. This allows the original images to be reformatted and
subsequently aligned with the physiological signal modality
along the temporal dimension. The serialization strategy that
we proposed not only mitigates the various impacts caused
by structural differences between the modalities, but also
eliminates the need to separately address pixel-based image
and sequence structures when designing feature extraction.
By focusing solely on the temporal structure, we design
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a contrastive learning method tailored for time-series data,
applicable to both modalities.

In this paper, we propose a novel framework for Contrastive
Learning-based Multi-modal Emotion Recognition (CLMER),
which can effectively integrate the internal modality repre-
sented by EEG-based physiological signals and the external
modality represented by visual data. The framework demon-
strates notable robustness and generalization capabilities. The
framework is primarily made up of three components arranged
in a sequential linear process. The first component is dedi-
cated to the preprocessing of the two modalities. Specifically,
standard signal processing operations are performed on EEG-
dominant physiological signals to provide the framework with
reliable and high-quality physiological data. Serialization is
applied to visual data to align them with the physiological
signal modality along the temporal dimension. In the middle
stage of the framework, after applying data augmentation to
both modalities, contrastive learning is employed to further
extract temporal features and inter-sample characteristics from
two modalities. Taking advantage of the serialization design
of the visual modality, the contrastive learning method only
needs to focus on the sequential structure. In the final stage,
the features of the two modalities are fused to complete
the emotion recognition and classification task. The primary
contributions of this work can be summarized as follows:

1) We propose a novel contrastive learning-based multi-
modal fusion framework for emotion recognition. By
integrating internal modalities (e.g., physiological sig-
nals) with external modalities (e.g., visual data), the
framework achieves robust performance, strong gener-
alization, and offers promising opportunities for further
development.

2) The serialization strategy for visual data, enhancing its
alignment with the temporal characteristics of physio-
logical signals. This enables visual data to better support
the temporally specialized Contrastive Learning method
while also streamlining the overall framework design,
leading to reduced data volume and improved training
efficiency.

3) A contrastive learning-based feature extraction method
specifically designed for time-series data enables the
extraction of features from sequential multi-modal data,
thereby facilitating deeper and more effective fusion.

After presenting relevant research and background infor-
mation on multi-modal fusion for emotion recognition (see
Section |lI-A) and contrastive learning (see Section [[I-BJ),
we propose the CLMER framework. We provide a detailed
explanation of the specific mechanisms and processes of data
serialization (see Section [III-B2), contrastive learning-based
feature extraction (see Section and multi-modal fusion
(see Section within the framework. The experimental
evaluation is conducted on the publicly available AMIGOS and
DEAP datasets, as well as our proprietary MAN2 dataset (see
Section [IV-A). In the proposed framework, all datasets show
strong performance, achieving notable improvements in fusion
methods (see Section & [[V-E). A detailed discussion of
the parameters within the framework was also conducted (see

Section [IV-H).

II. RELATED WORKS
A. Emotion Recognition

Emotion recognition is typically accomplished by address-
ing classification tasks using deep learning methods. These
classification tasks are based on various emotion paradigms,
which are primarily categorized into two types: discrete and
multidimensional [1f]. The discrete paradigm, exemplified by
Ekman’s basic emotion theory, includes six fundamental emo-
tions: happiness, sadness, anger, fear, surprise, and disgust [[19]]
[20], whereas the multidimensional paradigm is represented
by Russell’s theory of a two-dimensional continuous space
characterized by valence and arousal [21]].

There has been relatively extensive studies on unimodal
emotion recognition, with four primary modalities being
widely used: speech signals [22], text [23]], facial expressions,
and physiological signals [24]]. In the domain of physiological
signals [25]], Zhang et al. applied an attention mechanism to
both channel and temporal dimensions of EEG data, achieving
strong performance on both public and private datasets [26].
In terms of ECG, Fan et al. integrated the channel and spatial
dimensions to explore multi-dimensional fusion, thereby en-
hancing emotion recognition accuracy [8]]. For visual modality,
Jain et al. used a CNN to extract features from raw facial
images, followed by a Recurrent Neural Network (RNN) to
spread information and perform emotion classification [27]]. It
can be observed that recent studies increasingly tend to take
advantage of advanced attention mechanisms to better model
the sequential nature of physiological signals.

Human emotional states are complex and dynamic, making
it challenging for single-modal data to capture them both
reliably and accurately. This issue is particularly prominent in
external modalities, as such data can be influenced or misled
by subjects through deliberate behaviors [6]. Therefore, multi-
modal fusion approaches are increasingly adopted to integrate
data from multiple modalities and diverse perspectives, en-
hancing the diversity and volume of data and further improving
the stability and authenticity of emotion recognition [28]]. Tsai
et al. employed a cross-modal attention mechanism during the
fusion process to address the issue of non-alignment among
vision, text, and audio modalities [29]. Another study adopted
a similar mechanism to mainly fuse various structurally similar
physiological signals, including EEG and ECG, achieving
favorable results [30]. Only a limited number of studies have
explored the fusion of EEG and visual data. Earlier work by
Koelstra et al. extracted features from both modalities and
then compared the effectiveness of feature-level fusion and
decision-level fusion [31]. Recently, Hosseini et al. combined
quantitative and qualitative modes to perform binary classifica-
tion [32] for each dimension of the 3D emotional space model
[33]]. Overall, the fusion of EEG and visual data in emotion
recognition remains underexplored, with most existing models
based on CNNs, RNNs, or LSTMs [1]]. Moreover, the use
of attention mechanisms for this fusion is rare, potentially
limiting the efficient exploitation of temporal and sequential
information present in both modalities for emotion recognition
tasks.
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B. Contrastive Learning

Self-supervised contrastive learning methods have been
widely applied in the field of image analysis. For example,
Chen et al. proposed A Simple Framework for Contrastive
Learning of Visual Representations (SimCLR), which cal-
culates the loss of positive pairs based on the concept of
maximization of mutual information (MI) [34)]. Building on
SimCLR, Mohsenvand et al. further adapted a similar ap-
proach to sequential data, introducing Sequential Contrastive
Learning of Representations (SeqCLR). They applied channel
augmentation to EEG signals and calculated the normalized
temperature-scaled cross-entropy (NT-Xent) loss. Further self-
supervised methods for temporal data include that of Liu et
al., who mixed two augmentations of samples at the same
timestamp to form double Universums, which were then used
to construct a loss function [35]]. Eldele et al. applied two types
of augmentations to the temporal data of the EEG: strong
augmentation that introduces significant perturbations while
retaining partial temporal information, and weak augmentation
that applies minor changes to the original signal. They used
a contrastive learning loss function designed to predict future
information based on past time-series data [36].

The aforementioned contrastive learning methods for time-
series data have achieved promising in EEG signal analysis.
We consider extending these approaches to other modalities
with similar structures. In particular, we serialize the image
modality into time-series data, which aligns its structure with
that of EEG signals. This transformation not only reduces
the overall data size, thereby improving training efficiency,
but also enables the use of identical contrastive learning tech-
niques across both modalities. Moreover, the feature extraction
process in our framework becomes more streamlined, as
time-series—oriented methods can be applied directly without
additional modality-specific adjustments.

III. METHODS
A. Overview

In this section, we present the specific structural composi-
tion of CLMER, our proposed framework for emotion recog-
nition (see Figure [T). The core of the framework consists of
three main modules: a visual data serialization module, a con-
trastive feature extraction module, and a multi-modal fusion
module. Specifically, we extract facial features from visual
data to convert them into a time-series format consistent with
physiological signals. The sequence data from each modality
are then fed into a contrastive learning model for feature ex-
traction. In this module, we employ self-supervised contrastive
learning methods tailored for time-series data extracting useful
representations from unlabeled data. Both visual and signal
modalities share a unified feature extraction process, ensuring
a compact and simple framework design. The features ob-
tained from contrastive learning are subsequently applied to
the emotion recognition task. Finally, the multi-modal fusion
module employs cross-modal attention mechanism, training
modalities in pairwise and utilizing the resultant tensors for
the classification task. The CLMER framework leverages the
advantages of multi-modal fusion in terms of accuracy and

robustness over unimodal approaches. Furthermore, by em-
ploying serialized visual data in conjunction with contrastive
learning for feature extraction, it reduces the negative effects of
structural discrepancies between different modalities which, in
our study, are the differences between visual and physiological
signals, thereby enhancing the efficacy of the fusion process.

B. Multi-modal Data Preparation Module

1) Physiological Signal Preprocessing Module: For EEG
or physiological signals, we adopted a simple strategy to
streamline the framework, which involves controlling the sam-
pling frequency and applying signal filtering to preliminarily
preserve the distinctive information and features of the raw
data. For physiological signals as input, we first standardize
the sampling frequency to a specific value, and then apply
bandpass filter to remove low-frequency baseline drift and
high-frequency noise.

2) Visual Data Serialization Module: Unlike previous
methods in emotion recognition research that use facial images
in raw pixel pattern, our approach does not treat facial images
as direct inputs for the visual modality. Instead, we extract
meaningful visual information from these images (converted
from videos) and represent it in a time-series pattern, en-
suring consistency with EEG signal data. Before employing
contrastive learning methods for feature extraction, we adopt
a model structure partly derived from OpenFace [37] to extract
visual information in facial images and then integrate them for
the purpose of serialization. We selected two representative
types of facial visual data for emotion recognition.

e The first type consists of 3D landmark coordinates,
comprising 68 points strategically distributed across key
facial features including the eyes, mouth, and nose. The
temporal dynamics of these 3D landmarks allows us to
capture the trends in the movements of different facial
regions with greater precision.

o The second type is Action Units (AUs), serving as sup-
plementary explanatory data for 3D landmarks, which are
components of the Facial Action Coding System (FACS)
designed to classify and encode human facial movements.
AUs are obtained through a detailed analysis of individual
facial muscle activations, enabling the decomposition
of any anatomically possible facial expression into its
specific units.

We organized the extracted semantic information from the
images into a temporal data structure, thereby achieving the
serialization of visual data. This method aligns visual and EEG
data along the temporal dimension, providing input tensors to
the feature extraction module. The serialization approach can
also be applied to other types of facial visual data, such as
gaze tracking and HOG features. In the experiment section of
our study, we select only two visual features.

C. Contrastive Learning Based Feature Extraction Module

To further enhance the fusion efficiency, accuracy, and
robustness of the two modalities, we add a feature extraction
module following the serialization step. We use the self-
supervised Contrastive Learning (CL) methods specifically
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Fig. 1: The overall framework of the proposed CLMER, which is primarily composed of three components: the Multi-modal
Data Preparation Module, the CL-Based Feature Extraction Module, and the Multi-modal Fusion Module.

designed for processing time-series data. In this module,
sequential features in temporal dimension and latent features
among samples are captured, generating discriminative rep-
resentations for subsequent fusion. In addition to processing
the physiological data, we also adapted these methods for the
serialized visual data (see Figure [2).

Contrastive learning constructs loss functions based on the
theory of MI [34]. The objective of the loss function is
to maximize the similarity among augmentations originating
from the same sample or a designated group of samples while
minimizing the similarity between augmentations derived from
different samples or distinct groups [38]. Similarity between
augmentations can be measured using dot product or co-
sine similarity etc. The SeqCLR [39] method, which adapts
the contrastive learning approach SimCLR [40]] from image
data to time-series data, can effectively learn representations
from EEG data. In our framework, techniques specifically
designed for processing electrical signals, such as scaling
and jittering, are employed for data augmentation to generate
augmented views. Similarity calculations are then performed.
Loss functions are outlined in Eq.(T) and Eq.@), (22, z%)
represents positive pair and (2%, z°) represent negative pairs.
T is temperature parameter, 1j;; € {0, 1} is 1 iff j # 4.

exp(sim(z%,2°)/7)

l(a,b) = —lo (1)
o ng]:Vl ez exp(sim(z®, z¢)/T)
1 2N
ACsample = ﬁ Z[£(2C -1, 20) + K(QC, 2c — 1)] (2)
c=1

Another strategy we adopted to obtain temporal representa-
tions is using the summaries s; of samples z(; ., within a
certain period of time T to predict sample z;; in the future
timeline, as shown in Eq.@), based on the same MI theory.
The loss function aims to maximize the similarity between
the prediction and the future target, thus bringing the two
closer while minimizing the prediction with other samples in
the given period of time to train the summarization process
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Fig. 2: The specific details of the CL-Based Feature Extraction
Module and the working principle of its corresponding loss

function. The Sequence Loss is composed of two parts: sample
Loss and temporal Loss.

[36]. F is a function transform s; into the same dimension as
z aligning the prediction with samples.
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By integrating Lgqmpie and Liemporal, W€ can construct a
more stable loss function Eq.(@) that facilitates learning more
robust representations [14] in temporal dimension. A\; and Ag
are loss weighting hyper-parameters.
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D. Multi-modal Fusion Module

In our model, we employ a method fusing modalities in pair
capable of accommodating various data modalities as inputs
(see Figure [3). Therefore, this approach is well-suited for the
physiological and visual fusion strategy proposed in this paper.
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Fig. 3: The specific details of the Multi-modal Fusion Mod-
ule and the operational process of the cross-modal attention
mechanism for fusing data from two modalities

Considering that the data from various modalities in this
study have been unified into a sequential structure, employing
attention-based models for training can further improve the
framework’s performance. We utilize the cross-modal attention
mechanism for the multi-modal fusion of different modalities,
which incorporates certain improvements upon the original
attention principles, making it more suitable for training
with multi-modal data. Cross-modal attention is modified on
the basis of original attention mechanism that establishes a
connection between two modalities for computation. In the
following equation, @, represents the Query provided by
modality «, which is obtained through the transformation
XoWga. Meanwhile, Kg(Key) and Vg(Value) correspond
to the input sequences from the other modality, calculated
via XgWig and XgWy g, respectively. As shown in Eq.(5)
and Eq.(6), the remaining components of the equation remain
unchanged and are consistent with the original mechanism,
referred to as the single-head cross-modal attention.

nfxej‘g) = Attention(Qu, Ks, V3) (5)
KT
vieod _ o ftmaz( 2o )y ©

Vg

Similar to the original mechanism, as demonstrated in Eq.,
the outputs of n single-head attentions are concatenated to
obtain the output of the multi-head cross-modal attention.

Y(Z’il‘é) - Concat(Y(}fidBl), ey (Zﬁdﬂ”)) @)

IV. EXPERIMENTS AND RESULT
A. Datasets

1) DEAP Dataset: Human-machine interaction exhibits
behavioral patterns remarkably similar to those observed in
human-to-human interactions [[6]. In support of this premise,
the DEAP dataset was specifically generated to investigate
human-machine interactions that effectively evoke emotional
responses from participants. From the initial selection of 120

music videos from Last.fnﬂ comprising 60 tracks filtered
based on emotional labels and 60 manually selected tracks
to ensure a balanced distribution across the valence-arousal
spectrum [21]], a total of 40 videos were ultimately retained.
Their emotional impact was validated through linear regression
analysis, assessing valence, arousal, and dominance on a 9-
point scale [21]. This meticulous selection process ensured
that the final music collection effectively elicited a range
of emotional responses and eliminate researchers’ subjective
emotional annotations, facilitating the collection of reliable
EEG data for subsequent physiological signal-based training
[41]. In addition to EEG data, we employed our serialization
module to extract facial features, which include the 3D coordi-
nates of facial landmarks [17]] [42]] and facial action units [|18]
from the video recordings provided by the DEAP dataset. To
categorize emotional responses more effectively, we divided
the valence and arousal indicators into three distinct scales:
low [1,3), medium [3,6), and high [6,9]. By combining these
six scales in pairs, we generated nine classification labels that
segment emotions in a more precise way including LVLA (low
valence low arousal), LVMA (low valence medium arousal),
LVHA (low valence high arousal), MVLA (medium valence
low arousal)), MVMA (medium valence medium arousal),
MVHA (medium valence high arousal), HVLA (high valence
low arousal), HVMA (high valence medium arousal), HVHA
(high valence high arousal).

2) AMIGOS Dataset: The AMIGOS dataset includes a
collection of 16 short emotional videos, each designed to elicit
specific affective states in individual viewers. These videos,
ranging from 51 to 150 seconds, were carefully selected based
on their valence and arousal ratings, as annotated by 72
participants. The categorization of these videos into quadrants
of the valence-arousal space allows for a nuanced examination
of emotional responses [21]] [43]. The experimental design
ensures that each video is shown in a controlled environment,
enhancing the reliability of the recorded neuro-physiological
signals, such as EEG, ECG, and GSR. This multi-modal
approach aligns with DEAP that emphasize the importance of
using diverse stimuli to capture affective responses effectively
[41]. The short video segment of the AMIGOS dataset serves
as a vital resource for our experiment, we use EEG and facial
features to train CLMER. We classified each of the videos
into one of four quadrants of the valence-arousal (VA) space
align with AMIGOS’s classification [44] including LVLA
(low valence low arousal), LVHA (low valence high arousal),
HVLA (high valence low arousal), HVHA (high valence high
arousal).

In addition to the short video data, the AMIGOS dataset
features four long videos, each exceeding 14 minutes in
duration. The long video component of the AMIGOS dataset
encompasses a comprehensive study involving 37 participants,
with a particular emphasis on the individual data collected
during this experiment. While three participants (IDs 8, 24, and
28) were unavailable, 17 individuals completed the experiment
in isolation. Following the long video experiment, participants

'www.last.fm which is a platform where users assign specific emotional

tags to songs.
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were prompted to complete online questionnaires assessing
Personality Traits [45] and the Positive and Negative Affect
Schedule (PANAS) [46]. This dataset serves as a robust
resource for analyzing individual emotional responses within
a controlled video viewing context. In our experiment, we
selected 20 segments from long videos, extracting 5 seconds
of data from each segment, which includes both EEG and
facial features. Additionally, the materials are categorized into
four distinct classes: LVLA, LVHA, HVLA, and HVHA. This
structured approach enhances the investigation of emotional
dynamics in response to varying stimuli.

3) Self-developed MAN-II Dataset: In this dataset, we
utilized three images and a video clip as stimulus materials to
evoke four distinct emotional states: moved, angry, nervous,
and reproachful. EEG data were gathered from 19 out of
23 participants using the Emotiv EPOC wireless headset, a
well-established and commercially available wearable EEG
device. This headset operates at a sampling rate of 128 Hz and
features a total of 14 channels, adhering to the International
10-20 system. To enhance the methodology, we developed
MAN-II, which builds upon the original MAN [26] setup
by introducing a new class of samples and incorporating an
additional modality dimension to improve emotion detection
performance. Unlike the original approach, we extracted facial
features including facial landmarks and subjects’ eye gaze
from recorded facial videos captured during the trials. The
resulting dataset includes EEG data, 3D coordinates of facial
landmarks [[17] [42], and 2D coordinates of eye gaze [47], all
collected over a duration of 12 seconds for each emotional
class. All experiments involving the MAN-II dataset were
approved by the Science and Technology Ethics Committee
at the authors’ university.

B. Evaluation and Metrics

For each dataset, we employed a random shuffling proce-
dure to generate five distinct datasets with varying orders,
which were subsequently used to train the classification model.
Specifically, regarding our proposed private dataset MAN-
II, we included a total of four categories: moved, angry,
nervous, and reproachful. In the case of the DEAP dataset, we
categorized the data into nine distinct classes by partitioning
Valence and Arousal into three separate regions and combining
them pairwise to form the nine categories. Additionally, the
AMIGOS Short Videos and AMIGOS Long Videos datasets
comprised a total of four categories. Following the training
of our proposed model, we calculated the accuracy and the
F1 score for the classification task, employing their respective
calculation formulas, which are detailed below.

C .
> iy accuracy;

A = 8
ceuracy c 3
TP, +TN;
accuracy; = ————— ©)]

samples;

In this context, accuracy; refers to the accuracy of class
i. Additionally, C represents the total number of categories
in the classification task, TP denotes the number of true
positive samples that have been correctly predicted as positive,

TN indicates the number of true negative samples that are
accurately classified as negative, and samples refer to the total
number of samples within each category.

Percision x Recall

Fl=2x Percision + Recall (19)
Percision = TPI;—iPFP (11
Recall = 7TP€-PFN (12)
Flucighted = iy (i x samples:) (13)

Ziczl samples;

In the formulas for Precision and Recall, FP represents
the number of samples that are actually negative but are
incorrectly predicted as positive (false positives), while FN
denotes the number of samples that are actually positive but
are incorrectly predicted as negative (false negatives). Due to
the unequal distribution of sample sizes within each category
across all selected datasets based on our classification method,
the weighted F1 score is employed to more accurately reflect
the performance of the classification task.

C. Implementation Details

Visual features, including 3D landmarks and Action Units,
were extracted from each dataset after processed by our serial-
ization module. These visual features were then combined with
the EEG data to form the dataset structure used for training
and evaluating the model. The proportions of the training set,
validation set, and test set were approximately 70%, 15%,
and 15%, respectively. For each dataset, the experiments were
repeated five times; while the seed values for model training
remained constant, the order of the data was randomized.
The model performance was quantified by presenting both
the accuracy and the weighted F1 score on the test set,
along with their respective mean and standard deviation. In
physiological signal preprocessing module, we first set the
sampling frequency of all three datasets to a consistent 128
Hz. Subsequently, we apply a bandpass filter ranging from 4
to 45 Hz for processing the DEAP and AMIGOS datasets,
while a bandpass filter from 1 to 50 Hz is used for the
MAN-II dataset to preliminarily remove other interference.
Additionally, for the MAN-II dataset, the filter also effectively
eliminated the dominant power line interference occurring at
50 Hz in China. In the data feature extraction phase based
on contrastive learning, a batch size of 64 was employed
across all datasets, with a total of 500 training epochs. In
the subsequent phase, during the classification task using
a pairwise approach, a batch size of 64 was utilized for
all datasets. The optimal number of training epochs varied
according to the complexity of each dataset. Specifically, the
DEAP dataset required 300 training epochs, the AMIGOS
short videos’ dataset necessitated 300 epochs, the AMIGOS
long videos’ dataset required 200 epochs, and the MAN-II
dataset necessitated 300 epochs.

Both stages of the model employed the Adam optimizer.
For the contrastive learning model, the learning rate was set
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at 3e-4 with a weight decay of 3e-4. In contrast, the pairwise
model used for the classification task had a learning rate of le-
3 and reduced the learning rate every 20 epochs when hitting
the plateau. The training process used an NVIDIA GeForce
RTX 4090 GPU and PyTorch version 1.8.1 with CUDA 11.1.

D. Comparison Experiments

We selected the DEAP dataset as the primary dataset for our
experiments due to its diverse emotional labels, rich and bal-
anced emotion-eliciting materials, and comprehensive multi-
modal data in large volume. As a reliable public dataset, it
provides sufficient data support for our study and serves as an
effective benchmark to evaluate the performance of the fusion
and feature extraction modules in our framework. To address
the potential complexities of real-world emotion recognition
requirements, we expanded the classification standard in pre-
vious studies. Specifically, beyond performing simple binary
classification on each emotional dimension, we also increased
the complexity by advancing from four-class classification
that combining two dimensions to nine, thereby raising the
difficulty of downstream tasks for the framework.

The proposed CLMER framework primarily comprises
visual data serialization, contrastive learning-based feature
extraction, and multi-modal fusion modules. The methods
collected for comparison with ours each have distinct char-
acteristics. Most of the methods rely on traditional CNN or
LSTM architectures for fusion. The approaches of Jung et al.
employ a strategy of feature extraction followed by fusion
for EEG signals and facial expressions, while HFCNN, on
the other hand, focuses specifically on the fusion of EEG
and peripheral physiological signal (PPS) data modalities. In
standard classification tasks, CLMER achieved an accuracy
and F1 score of 96.45% in the binary classification task and
96.47% in the four-class classification task, surpassing the
results of other comparative methods and demonstrating ex-
ceptional performance. Despite handling more complex nine-
class task compared to previous multi-modal fusion studies on
the DEAP dataset, CLMER demonstrates outstanding perfor-
mance among those methods reaching 96.09% in accuracy and
96.09% in F1 score (see Table [I).

Results of Y.-C. Wu et al. [48], Huang et al. [49], Zhao et
al. [50] and HFCNN [51]] are calculated as the average of the
values derived from the valence and arousal dimensions in two
classes and Siddharth et al. [52] adds another liking dimension.
Result of Y. Wu et al. [48] is calculated as the average of
the values derived from the valence, arousal dimensions in
nine classes. The paper of Hosseini et al. [32]] provides two
strategies for comparison. Either of them is calculated on the
basis of accuracy and mean square error from valence and
arousal. The rest of the results in the table refer to the original
figures.

For the AMIGOS dataset, most studies have utilized the
short-video mentioned in this paper (see section [[V-AJ),
primarily conducting binary classification tasks on valence and
arousal. Therefore, we applied CLMER to the same binary
classification tasks on the short video dataset. Additionally, to
increase task complexity, we introduced a four-class classifica-
tion task, which is commonly used in other studies, to further

TABLE I: Performance of different models on DEAP in
terms of multi-class average accuracy (Acc%) and multi-class
average F1 score (F1%) with stand deviations. The best results
for every classification task are highlighted in bold.

Result

Method Modality Class
Acc Fi
Y.-C. Wu et al. [48] EEG, Vision 2 68.75
Huang et al. [49 EEG, Vision 2 77.27£11.29 -
Siddharth et al. [52] EEG, Vision 2 79.60 70.00
HFCNN |[51] EEG, PPS 2 84.71 -
Zhao et al. [50] EEG, Vision 2 86.50 -
Hosseini et al. [32] PPS, Vision 2 96.08+0.35 -
Wang et al. [53 EEG, Vision 2 96.89 -
Hosseini et al. [32] EEG, Vision 2 97.59+0.22 -
CLMER (our) PhysioData, Vision 2 97.65+0.71 97.65+0.72
Cimtay et al. [54] EEG, Vision 4 53.80 -
Siddharth et al. et al. [52] EEG, Vision 4 54.22 31.00
Lee et al. [55] EEG, Vision 4 83.20 84.10
CLMER (our) PhysioData, Vision 4 96.47+1.29 96.47+1.28
Y. Wu et al. [56] EEG, Vision 9 95.12 94.22
CLMER (our) PhysioData, Vision 9 96.09+0.55 96.09+0.55

TABLE II: Performance of different models on AMIGOS short
dataset in terms of multi-class average accuracy (Acc%) and
multi-class average F1 score (FI1%) with stand deviations.
V stands for Valence. A stands for Arousal. VA represents
Valence-Arousal. The best results are highlighted in bold.

Method Modality Class Result
Acc FI
Strizhkova et al. [58]  PhysioData, Vision Xg; : ggggig
Kamran et al. [59] PhysioData, Vision Xg; ;éggigg; :
Siddharth et al. [52] PhysioData, Vision ng ;?421; ;388
Siddharth et al. {521 Biosensing X% g;:gg 32:88
Menon et al. [60]  EEG, ECG, EDA Xg; 2(7);8 -
iR e v 1) B0 e
CLMER (our) PhysioData, Vision = VA(4) 81.42+1.19 81.41+1.16

evaluate the performance of our framework. Kamran et al.
integrated patched facial data and physiological signals using
an attention-based encoder for fusion. In contrast, Siddharth
et al. employed a pre-trained VGG-16 model [57] to extract
features from EEG transformed images, and subsequently
fused the extracted features using an LSTM network. CLMER
achieved an accuracy of 88.37% and an F1 score of 88.37%
in the valence binary classification task on short-video data,
while attaining an accuracy of 83.56% and an F1 score of
83.53% in the arousal binary classification task, surpassing
the results of other comparative experiments. Furthermore,
in the valence-arousal four-class classification task, CLMER
obtained a notable accuracy of 81.42% and an F1 score of
81.41% (see Table [M).

After expanding the original three-class emotion dataset
of MAN to four-class MAN-II, our multi-modal fusion ap-
proach demonstrated improved accuracy and F1 scores com-
pared to the single-modal FetchEEG method, even with the
increased task complexity. We incorporated two attention-
based multimodal fusion methods, MulT and Husformer, as
comparative approaches for training on the MAN-II dataset.
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TABLE III: Performance of different models on MAN-II in
terms of multi-class average accuracy (Acc%) and multi-class
average F1 score (F1%) with stand deviations. The best result
is highlighted in bold.

Method Modality ~ Class Result
Acc Fl

Conformer [26] EEG 4 93.26 93.00

FetchEEG |26 EEG 4 96.51 96.00
MobileVIT_s Pretrain [[61] EEG+Vision 4 95.27+1.14  95.28+1.13

MulT [29] EEG+Vision 4 96.82 96.82

Husformer [30)] EEG+Vision 4 97.05 97.06
CLMER (our) EEG+Vision 4 97.75+£1.63  97.75+1.62

Experimental results demonstrate that the feature extraction
module in CLMER plays a crucial role, leading to a significant
improvement over existing methods. This further validates that
CMLER is likely to exhibit greater stability and superior per-
formance when applied to more complex real-world emotion
recognition scenarios.

E. Ablation Study for Modality and CL Module

We evaluate the contributions of each component in our
proposed Contrastive Learning based Multi-modal Emotion
Recognition (CLMER) model, focusing on both modality
utilization and the effectiveness of the contrastive module.
Ablation experiments were conducted using the publicly avail-
able DEAP dataset [41]], and AMIGOS [44]], which are widely
recognized for their comprehensive emotional data. We also
use our private dataset MAN-II for ablation. The effective-
ness of the ablation experiments was evaluated based on
the accuracy and F1 score of the aforementioned nine-class
and four-class classification tasks (see Section [[V-A). In our
initial exploration, we trained a 10-layer transformer network
independently on three distinct modalities: preprocessed EEG
signals, 3D landmark data, and AUs extracted from video
recordings. Subsequently, we proceeded to combine the data
from the three modalities pairwise to train the cross-modal
attention based model employed in our network architecture.

We investigated three combinations: the pairing of EEG
data with 3D Landmark information, the integration of EEG
signals with AUs, and the combination of 3D Landmark
data with AUs. By assessing each of above scenarios, we
aimed to gain a deeper understanding of how each modality
contributes to the collective performance of the model. In
our proposed CLMER model, we employ the self-supervised
contrastive learning techniques, to extract features for the
classification task. Following this feature extraction phase,
the resultant representations were subsequently fed into the
fusion module to perform the task. This two-step approach
not only enhances the ability of the model to capture intricate
correlations between modalities but also improves the overall
accuracy by providing comprehensive information for emotion
recognition. By systematically integrating contrastive learning
with a pairwise fusion module, our methodology seeks to
optimize the effectiveness of multi-modal data utilization.

The experimental results of DEAP revealed that relying on a
single modality provides an overly one-sided representation of
human emotional states, rendering it insufficient for handling

potentially complex emotion classification tasks, as evidenced
by relatively low accuracy and F1 scores. When combining
modality data in pairs, a significant improvement in training
performance was observed (see Table [[V). Notably, the fusion
of the physiological signal modality with any visual informa-
tion modality demonstrated remarkable enhancements, achiev-
ing an overall performance increase of nearly 50% compared
to single-modality approaches. After integrating data from
three modalities, both accuracy and F1 scores reached 94.91%,
indicating that the multiple modalities enables the model to
more comprehensively capture emotional states. Compared
to single-modality approaches, multi-modal fusion clearly
offers distinct advantages, achieving strong performance in
the more complex nine-class classification task. With the
assistance of contrastive learning (CL), the accuracy and F1
score further increased to 96.09%, demonstrating exceptional
performance. Additionally, it is evident that the proposed
model exhibits robust stability when addressing the samples’
imbalance among class. The confusion matrix for experiments
on the DEAP dataset (see Figure [) exhibits a dark main
diagonal with very light colors in other positions, indicating
strong classification performance, minimal misclassification,
and robust recognition capability of the model. The AMIGOS

TABLE IV: Performance of different mode on DEAP dataset
in terms of nine-class average accuracy (Acc%) and nine-class
average F1 score (F1%) with stand deviations. w/o: without,
w/: with. The best result is highlighted in bold.

Mode Modality Result
EEG 3D Landmark AU Acc F1

Single v X X 43.01£3.89  42.5+4.30
Single X v X 47.66+£1.96  46.30+1.91
Single X X v 54.77£0.73  54.32+0.73
Dual v v X 81.87£1.26  81.92+1.25
Dual v X v 80.34+£2.59  80.38+2.61
Dual X v v 61.64+£1.62 61.41£1.65
Fusion w/o CL v v v 94.91+0.89  94.91+0.89
Fusion w/ CL(our) v v v 96.09£0.55  96.09+0.55

dataset for ablation study is divided into two experimental
settings: long-video stimuli and short-video stimuli, serving
as complementary public datasets. We conducted comparative
experiments across single-modality, dual-modality, and multi-
modality approaches, as well as multi-modality with enhanced
feature extraction. Overall, the results for long videos are better
than those for short videos. This is in part because the long-
video dataset contains a larger quantity of data with the same
label, providing richer information. In addition, long videos
create a more immersive emotional state for subjects, leading
to improved data quality. The results (see Table [V| & Table
reveal that as the number of introduced modalities increases,
both accuracy and F1 score show a gradual improvement. This
trend aligns with the results observed on the DEAP dataset,
further corroborating the importance of multi-modal fusion in
emotion recognition. The confusion matrix for experiments on
the AMIGOS dataset also show great performance with dark
diagonal line (see Figure [3).

After incorporating contrastive learning for feature extrac-
tion, there was a noticeable improvement in short video
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Fig. 4: Confusion matrix of CLMER on DEAP dataset

data, which had a lower accuracy and F1 scores before. The
accuracy increased from 68.09% and F1 score of 68.07% to
81.96% accuracy and 81.94% F1 score with self-supervised
feature extraction. The improvement of contrastive learning in
long-video data, which already showed good fusion results,
is less pronounced. However, it can be observed that the
standard deviation of accuracy is reduced by approximately
36% with CL from 1.60 to 1.01. This indicates that after
feature extraction using CL, the overall stability of models
is enhanced. The similar situation can also be observed in
previous experiments based on DEAP. For our privately orga-

TABLE V: Performance of different models on short-video
AMIGOS in terms of four-class average accuracy (Acc%) and
four-class average F1 score (F1%) with stand deviations. w/o:
without, w/: with. The best result is highlighted in bold.

Mode Modality Result
EEG 3D Landmark AU Acc Fl

Single v X X 40.69+0.81  39.82+0.93
Single X v X 54.44£1.35 54.17+1.44
Single X x v 55.78+1.42  55.64+1.43
Dual v v X 54.53+1.83  54.45+1.84
Dual v 3 v 50.60+£0.99  50.32+1.02
Dual X v v 65.57+0.82  65.49+0.83
Fusion w/o CL v v v 68.09+0.40  68.07+0.39
Fusion w/ CL(our) v v v 81.96+1.57 81.94+1.55

nized dataset, MAN-II, the experimental results clearly show
that the AU data in the serialized visual modality performs
well in the single-modality setting and plays an important
role in subsequent dual-modality and fusion processes. After
the fusion of EEG and 3D Landmark with AU, the accuracy
improved significantly from 41.72% and 50.11% to 84.79%
and 89.39%, bringing nearly double the improvements, respec-
tively. The result of 96.43% in the fusion mode demonstrates
the effectiveness of fusing three modalities, while the use
of CL for feature extraction further increased the accuracy

TABLE VI: Performance of different models on long-video
AMIGOS in terms of four-class average accuracy (Acc%) and
four-class average F1 score (F1%) with stand deviations. w/o:
without, w/: with. The best result is highlighted in bold.

Mode Modality Result
EEG 3D Landmark AU Acc F1
Single v X X 64.78+1.32  64.93+1.30
Single X v X 60.57+2.41  58.08+3.19
Single X X v 75.21+£2.14  75.39+£2.15
Dual v v X 86.57+£3.07  86.59+3.14
Dual v X v 82.26+1.67  82.35+1.62
Dual X v v 84.07+£1.04  84.17+1.01
Fusion w/o CL v v v 90.07+1.60  90.09+1.58
Fusion w/ CL(our) v v v 90.83+1.01  90.82+1.03
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Fig. 5: Confusion matrix of CLMER on (a) AMIGOS Short
and (b) AMIGOS Long datasets.

to 97.75% (see Table |VII). The confusion matrix of MAN-
Il from the experimental results further supports the afore-
mentioned conclusions, demonstrating excellent classification
performance, with colors predominantly concentrated along
the main diagonal (see Figure [6).

TABLE VII: Performance of different models on MAN-II in
terms of four-class average accuracy (Acc%) and four-class
average F1 score (FI1%) with stand deviations. w/o: without,
w/: with. The best result is highlighted in bold.

Mode Modality Result
EEG 3D Landmark AU Acc FI

Single v x x 41.72+0.84  41.17+£0.97
Single X v X 50.11+£0.87  48.24+1.54
Single X X v 74.96£1.05  75.03x0.77
Dual v v X 42.76x2.81  42.79+2.73
Dual v x v 84.79+0.35  84.80+0.35
Dual x v v 89.39+0.42  89.38+0.42
Fusion w/o CL v v v 96.431.91  96.44+1.94
Fusion w/ CL(our) v v v 97.75£1.63  97.75£1.62

This ablation study provides a detailed view of how different
modalities and contrastive learning contribute to the CLMER
framework. When using single modalities, the performance
remains relatively limited: EEG alone captures intrinsic neural
responses linked to emotions, but its discriminative power is
reduced by noise and variability across subjects; 3D landmarks
describe geometric facial movements, and AUs reflect muscle
activations, yet both are subject to intentional masking or
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Fig. 6: Confusion matrix of CLMER on MAN-II dataset.

subtle individual differences. This explains why unimodal
models in our experiments achieved notably lower accu-
racy and F1 scores compared to multimodal settings. When
modalities are fused, the benefits become evident. Pairwise
integration, such as EEG with 3D landmarks or EEG with
AUs, already yields significant improvements over unimodal
baselines. This demonstrates the complementary nature of
internal physiological signals and external visual cues. EEG
provides reliable and involuntary information about emotional
states, while the serialized visual modality contributes ex-
pressive and interpretable external manifestations. The three-
modality configuration (EEG + 3D landmarks + AUs) further
enhances performance, achieving the best results across tasks
and datasets. These outcomes suggest that each modality con-
tributes non-redundant information and that their integration
enables the framework to capture emotions from multiple
perspectives, thereby improving robustness and generalization.
The role of contrastive learning is equally critical. Adding the
contrastive module consistently improved classification perfor-
mance, increasing both accuracy and F1 scores beyond multi-
modal fusion alone. More importantly, it reduced performance
variance across repeated runs, indicating greater stability.
By maximizing agreement between augmented views of the
same sample while separating different samples, contrastive
learning extracts modality-specific but semantically aligned
temporal representations. This not only bridges the structural
gap between EEG and serialized visual data but also enhances
discriminability in the fused space.

FE. Ablation Study for Serialization

The efficiency of the CLMER framework is attributable to
several design choices, one of which is the use of a serial-
ization module that transforms facial images into sequential
representations, replacing raw pixel-level inputs in the multi-
modal fusion process. To evaluate the effectiveness of the
serialization strategy within CLMER, we conducted ablation
studies by comparing it with two alternative methods. The first
baseline employs a downsampling approach to resize captured
facial images to 32x32x3, serving as the visual input modality.
The second utilizes a pre-trained MobileViT [61] model to

extract feature representations from the original 112x112x3
facial images, resulting in a 16-patch x 640-dimensional se-
quence. In both cases, temporal alignment with physiological
signals is maintained at a one-second resolution. Experimental
configurations are kept consistent with those in the main
comparative experiments. To comprehensively evaluate the
proposed method, we conduct experiments on two public
datasets: DEAP and AMIGOS (short videos). Specifically,
the DEAP dataset is used for binary, four-class, and nine-
class emotion classification tasks, while the AMIGOS dataset
focuses on binary and four-class tasks. To ensure a fair and
informative comparison, model performance is assessed from
three perspectives: memory consumption (i.e., GPU usage),
training time, and classification effectiveness on the test set,
measured by accuracy and Fl-score (see Table Table
and Table [X).

TABLE VIII: Performance of different methods on DEAP
dataset in terms of mulit-class accuracy (Acc%) and F1 score
(F1%). The best result is highlighted in bold.

Downsampling Mobilevit_s Serialization(3)
Acc F1 Acc Fl Acc Fl
VA (9) 81.21+2.77  81.19+2.75  87.58+2.98  87.58+2.99  94.91+0.89  94.91+0.89
VA (4) 76.43+4.16  76.28+4.22  88.90+2.11  87.76+2.28  96.18+0.65  96.18+0.65
Valence (2)  79.91£2.74  79.95+2.73  89.5442.02  89.55+2.01  95.49+0.48  95.49+0.48
Arousal (2)  82.22+0.55  82.16+0.56 ~ 87.79+1.75  87.81+1.77  95.05+1.28  95.03+1.27

TABLE IX: Performance of different methods on AMIOGS
Short dataset in terms of mulit-class accuracy (Acc%) and F1
score (F1%). The best result is highlighted in bold.

Downsampling Mobilevit_s Serialization(3)
Acc Fi1 Acc F1 Acc F1
VA (4) 31.06+1.62  21.44+3.69  28.34%1.10 24.43+1.22  68.09+0.40  68.07+0.39
Valence (2)  62.43+0.50  48.05+0.70  60.48+2.39  50.12+3.24  78.29£1.99  77.98+2.01
Arousal (2)  55.90+1.61  41.36x1.17  55.58+1.57 45.18+4.98  69.61£1.39  69.48+1.52

To facilitate comparison, we used the mean value of each
metric as the reference unit (set to 1) and computed the ratio of
each method to this mean. The reciprocals of these ratios were
then taken to represent time efficiency and space efficiency, so
that larger values indicate better performance. This inversion
ensures that shorter training times and lower GPU memory
consumption correspond to higher efficiency scores, which
can be interpreted as capability values for comparison. For
accuracy, to better evaluate the performance of each method,
we first computed the ratio relative to the mean, treating the
mean as the unit value of 1. We then calculated the difference
between each method and the mean, and applied z-score
normalization to standardize these differences to have a mean
of zero. Since the resulting standardized values, following a
normal distribution N (0, 1), may include negative numbers,
we shifted the axis by two units to the right to represent the
capability of each method in terms of training accuracy. The
performance of three methods based on the above procedure
is shown in the Figure [7] and

From the radar charts, it can be observed that the Downsam-
pling method consistently performs the worst across all three
metrics, remaining below the average level of the three ap-
proaches. The MobileViT_s-based multimodal fusion method
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TABLE X: The average time consumption, space consump-
tion, and accuracy across the three methods.

DEAP AMIGOS

Mobilevit_s

Downsampling Serialization

21728 2534 2844 21730 2148 2856

19084 6820 15226 20026 7097 16496
79.94 88.45 95.41 49.80 48.13 72.00

Mobilevit_s Downsampling Serialization

GPU Memory(MiB)
Time(s)
Accuracy(%)

Comparison of DEAP
Accuracy

—— Downsampling
MobileVIT_s
—— Serialization
—— Average

Fig. 7

Comparison of AMIGOS

—— Downsampling
Accuracy

MobileVIT_s
—— Serialization
—— Average

Fig. 8

preprocesses the image modality using a pre-trained model
and incorporates it with physiological signals during training,
resulting in only two modalities and thus two times cross-
modal attention operations. This design yields clear advantages
in both training time and memory consumption compared to
the other methods, although its overall performance exceeds
that of Downsampling, it’s accuracy remains only around the
average on the DEAP dataset and even falls below Downsam-
pling on the AMIGOS dataset.

In contrast, the proposed serialization method transforms
the original image modality into two distinct modalities during

computation. Combined with the physiological signal modal-
ity, this forms a three-modality framework and entails six times
cross-modal attention operations in total. While this increases
the number of modalities and extends training time compared
to the MobileViT_s-based method, it still achieves faster train-
ing than the Downsampling approach and maintains compara-
ble memory consumption to MobileViT_s. More importantly,
serialization delivers a substantial accuracy gain, as it exceeds
the average accuracy on the DEAP dataset by 7.48 percent-
age points and surpassing MobileViT_s by 6.96 percentage
points. On the AMIGOS dataset, it outperforms the second-
best method (Downsampling) by 22.2 percentage points and
23.87 comparing to MobileVit_s, demonstrating a significant
and consistent advantage in classification performance. The
longer training time of serialization is partly attributable to
computations being performed on an NVIDIA RTX 3090,
which lags behind state-of-the-art hardware; on more advanced
devices, this time gap would be considerably reduced, making
the significant accuracy advantage of serialization even more
compelling.

G. Parameter Analysis

In the multi-modal fusion module, a cross-modal attention
mechanism is used to perform computation between data be-
tween every two modalities. Before performing this operation,
there is a procedure unifying the tokens length to simplify
the computation process. The token length significantly influ-
ences the performance of fusion module. We conducted an
experiment to determine the optimal token length on two-
class and four-class tasks on both DEAP and short videos’
AMIGOS dataset and additional nine-class task on DEAP. In
the experiment, we keep other experimental settings such as
equipment, seeds, and dataset structure consistent. Changing
the length of the token multiple times, we obtained the
experimental results shown in Table and Table

For DEAP, it can be observed that when token length is
around 30 to 40, training performance is generally subop-
timal. However, as the length exceeds the maximum length
40 initially provided by three modalities, the performance
gradually improves, reaching its optimal level around 60 for
two-class tasks, approximately 70 for four-class task and 50
for nine-class task (see Table [XI| and Figure [7). Optimal
token length slightly longer than the 40-length channels data
provided by the physiological data, and much longer than
the 3-channel and 2-channel data provided by the other two
modalities. We concluded that a token length that is too short
may limit the performance of the long-token modality, while
an excessively long token may overly dilute the modality data
density. Therefore, when determining the length of token for
fusion using cross-modal attention, it is essential to avoid
the excessive compression of long-token modalities, and it
is equally important to prevent the excessive dilution of
short-token modalities. The experiments conducted on the
AMIGOS Short dataset, as illustrated in Table @l and Figure
[8] The number of channels provided by the physiological data
decreased to 17, while the other two modalities remained
unchanged. It is evident that the optimal fusion token length is
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TABLE XI: Performance of different token length on DEAP
dataset in terms of mulit-class accuracy (Acc%) and F1 score
(F1%). The best result is highlighted in bold.

Token length Valence (2) Arousal (2) VA 4) VA (9)
Acc Fl Acc Fi Acc Fi Acc Fl
30 94.61 94.62 9422 9424 9272 9272 9444 9445
40 9222 9223 9289 9289 9450 9450 96.50 96.50
50 96.56  96.56 9528 9528 95.61 95.62 97.01 97.02
60 98.11 98.11 96.83 96.84 9722 9722 9622 96.22
70 96.22 9623 9556 9556 9744 9744 96.89 96.88

TABLE XII: Performance of different token length on AMI-
GOS Short dataset in terms of mulit-class accuracy (Acc%)
and F1 score (F1%). The best result is highlighted in bold.

Token length Valence (2) Arousal (2) VA 4)
Acc FI Acc FI Acc F1
5 84.69 84.67 7857 78.52 68.82 68.77
10 87.61 87.62 84.45 8442 8279 82.77
15 89.26 89.26 8246 8243 83.82 83.80
20 87.54 87.52 8136 81.30 82.13 82.12
25 87.26 87.24 80.55 8046 80.48 80.45

located from 10 to 20, a range that correspond to the maximum
token length provided, while ideally remaining as close as
possible to the two smaller modalities. It is important to avoid
using excessively short token lengths. As shown in the figure,
when a token length of 5 is used, the training convergence
speed significantly decreases, and the final performance is
considerably lower than that of other token lengths. This
further emphasizes the necessity of prioritizing the longest
token length provided by all modalities when performing
fusion using cross-modal attention.

V. CONCLUSION

In this paper, we propose CLMER, a contrastive learn-
ing based multi-modal cross-attention framework designed to
address potential real-world demands for complex emotion
recognition. CLMER applies a serialization operation to visual
image data, which reduces modality discrepancies, unifies
modality structures, and simultaneously simplifies the overall
architecture of the multi-modal fusion model training frame-
work. Contrastive learning is introduced as a feature extrac-
tion method to further enhance the effectiveness of modality
fusion. Serialization procedure not only eliminates the need
for modality-specific feature extraction approaches but also
provides solid alignment for the fusion process. Moreover,
by compressing the scale of the visual data, it significantly
reduces the resource requirements for training, including mem-
ory consumption, while substantially enhancing computational
efficiency. The experimental results clearly demonstrate that
multi-modal fusion outperforms single-modality approaches in
tackling more complex emotion recognition tasks on the two
public datasets, DEAP and AMIGOS, as well as the expanded
private dataset, MAN-II. We attribute this improvement to
the powerful modality fusion capabilities of the CLMER
framework, as well as the comprehensive internal and external
data support. Unlike traditional feature extraction methods,
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Fig. 9: Accuracy of CLMER with different token length on
DEAP dataset. (a) illustrates the binary classification task on
the valence dimension. (b) illustrates the binary classification
task on the arousal. (c) illustrates the four-class classification
task on the valence-arousal. (d) illustrates the nine-class classi-
fication task on the valence-arousal. The curves of best results
are highlighted in red.

CLMER employs contrastive learning to derive representa-
tions from sequential data, facilitating subsequent multi-modal
fusion. While achieving outstanding performance comparable
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Fig. 10: Accuracy of CLMER with different token length on
AMIGOS Short dataset. The best results are highlighted in
bold and red. (a) illustrates the binary classification task on
the valence dimension. (b) illustrates the binary classification
task on the arousal dimension. (c) illustrates the four-class
classification task on the valence-arousal dimensions.

to other high-performance models for emotion recognition,
CLMER is also exhibiting robust generalization and stability
in emotion recognition tasks.
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